
Creative Software Design

9 – Polymorphism 1

Yoonsang Lee

Fall 2023

Outline

• What is Polymorphism?

• Pointers & References with Inheritance

• Polymorphism in C++

• Virtual Function

• Virtual Destructor

• Caution: Object Slicing

What is Polymorphism?

• From Greek words: “poly” means "many, much" and
“morphism” means "form, shape“

• The ability to create a variable, a function, or an object that
has more than one form. [wikipedia] - 다형성 (多形性).

• In other words,

– Ability of an object of type A to appear as and be used like
another type B

– Ability to provide access to entities of different types through the
same interface

• One of the fundamental OOP principles

• Steering wheel + accelerator + brake in trucks or cars.

• Volume + channel control in TV or DVD player remotes.

• Shutter button for film or digital cameras.

entities of different types

entities of different types

Real-world Examples

the same interface for entities of different types

the same interface for

the same interface for

Types of Polymorphism

• Subtype polymorphism (today’s topic)

– Ability to access a derived class object through its base class interface

– Often simply referred to as just “polymorphism”.

• Ad hoc polymorphism

– Allows functions with the same name to work differently for each type

– Overloading in C++

• Parametric polymorphism

– Allows a function or a data type to be written generically

– Templates in C++

• Coercion polymorphism

– (Implicit or explicit) casting in C++

An Example of Subtype Polymorphism
class Animal

{

public:

virtual string talk() = 0;

};

class Cat : public Animal

{

public:

virtual string talk()

{ return "Meow!"; }

};

class Dog : public Animal

{

public:

virtual string talk()

{ return "Woof!"; }

};

void letsHear(Animal& animal)

{ cout << animal.talk() << endl; }

int main()

{

Cat cat;

Dog dog;

letsHear(cat);

letsHear(dog);

return 0;

}

Pointers & References with Inheritance

• To use polymorphism in C++, you first have to

understand how to use pointers and references

with inheritance

• Recall that inheritance implies “is-a” relationship

– A car is a vehicle.

A truck is a vehicle.

A cart is a vehicle.

...

Pointers with Inheritance

• A class(B) pointer can store

– the address of its own class(B) object

– the address of its derived class(C) object

– CANNOT store the address of its base(A) class object

A

B

C

#include <iostream>

using namespace std;

class Person

{

public:

void talk()

{

cout << "talk" << endl;

}

};

class Student : public Person

{

public:

void study()

{

cout << "study" << endl;

}

};

class CSStudent : public Student

{

public:

void writeCode()

{

cout << "writeCode" << endl;

}

};

int main()

{

Student* s1 = new Person; // error

// A Person CANNOT be regarded as a Student.

Student* s2 = new Student;

// A Student is regarded as a Student

Student* s3 = new CSStudent;

// A CSStudent is regarded as a Student

Person* p1 = new Person;

Person* p2 = new Student;

Person* p3 = new CSStudent;

delete p1;

delete p2;

delete p3;

delete s1;

delete s2;

delete s3;

return 0;

}

#include <iostream>

using namespace std;

class Person

{

public:

void talk()

{

cout << "talk" << endl;

}

};

class Student : public Person

{

public:

void study()

{

cout << "study" << endl;

}

};

class CSStudent : public Student

{

public:

void writeCode()

{

cout << "writeCode" << endl;

}

};

int main()

{

 Student st;

 Person* person_st = &st; // ok

// A Student is regarded as a Person.

 Student* student_st = &st; // ok

// A Student is regarded as a Student.

 CSStudent* csstudent_st = &st; //error!

// A Student CANNOT be regarded as a CSStudent.

CSStudent csst;

Person* person_csst = &csst; // ok

Student* student_csst = &csst; // ok

CSStudent* csstudent_csst = &csst; //ok

 return 0;

}

Pointers with Inheritance

• A class(B) pointer can access

– the members of its base class(A)

– the members of its own class(B)

– CANNOT access the members of its derived class(C)

A

B

C

#include <iostream>

using namespace std;

class Person

{

public:

void talk()

{

cout << "talk" << endl;

}

};

class Student : public Person

{

public:

void study()

{

cout << "study" << endl;

}

};

class CSStudent : public Student

{

public:

void writeCode()

{

cout << "writeCode" << endl;

}

};

int main()

{

Student st;

Person* person_st = &st;

// A Student is regarded as a Person.

person_st->talk();

person_st->study(); // error!

person_st->writeCode(); // error!

// You cannot call them because not

all Persons are Students or CSStudents.

return 0;

}

int main()

{

Student st;

Student* student_st = &st;

student_st->talk();

student_st->study();

student_st->writeCode(); // error!

return 0;

}

References with Inheritance

• A class(B) reference can refer to

– its own class(B) object

– its derived class(C) object

– CANNOT refer to its base class(A) object

• Exactly the same as the pointers!

A

B

C

#include <iostream>

using namespace std;

class Person

{

public:

void talk()

{

cout << "talk" << endl;

}

};

class Student : public Person

{

public:

void study()

{

cout << "study" << endl;

}

};

class CSStudent : public Student

{

public:

void writeCode()

{

cout << "writeCode" << endl;

}

};

int main()

{

Student st;

Person& person_st = st; // ok

Student& student_st = st; // ok

CSStudent& csstudent_st = st; //error!

CSStudent csst;

Person& person_csst = csst; // ok

Student& student_csst = csst; // ok

CSStudent& csstudent_csst = csst; //ok

return 0;

}

References with Inheritance

• A class(B) reference can access

– the members of its base class(A)

– the members of its own class(B)

– CANNOT access the members of its derived class(C)

• Exactly the same as the pointers!

A

B

C

#include <iostream>

using namespace std;

class Person

{

public:

void talk()

{

cout << "talk" << endl;

}

};

class Student : public Person

{

public:

void study()

{

cout << "study" << endl;

}

};

class CSStudent : public Student

{

public:

void writeCode()

{

cout << "writeCode" << endl;

}

};

int main()

{

Student st;

Person& person_st = st;

person_st.talk();

person_st.study(); // error!

person_st.writeCode(); // error!

return 0;

}

int main()

{

Student st;

Student& student_st = st;

student_st.talk();

student_st.study();

student_st.writeCode(); // error!

return 0;

}

Polymorphism in C++

• Subtype polymorphism (will be referred to as just

“polymorphism” in this lecture) in C++ requires

references or pointers

– In C++, polymorphic behavior is only possible when an

object is referenced by a reference or a pointer

• A derived class object is treated as if it were its

base class type by accessing through a pointer or

reference!

Polymorphism in C++

• In this example,

• Derived class objects
(Student st,
CSStudent csst)

• are treated as if they were
their base class type
(Person)

• by accessing through
references (person_st,
person_csst)

int main()

{

 Student st;

 CSStudent csst;

 Person& person_st = st;

 Person& person_csst = csst;

person_st.talk();

person_csst.talk();

...

}

Quiz 1

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Recall: Overriding Member Function

• You can override a member function to provide a

custom functionality of the derived class.

// Vehicle class.

class Vehicle {

public:

Vehicle() {}

void Accelerate();

void Decelerate();

LatLng GetLocation() const;

double GetSpeed() const;

double GetWeight() const;

private:

LatLng location_;

double speed_;

double weight_;

};

// Car class.

class Car : public Vehicle {

public:

Car() : Vehicle() {}

int GetCapacity() const;

// Override the parent's GetWeight().

double GetWeight() const {

return Vehicle::GetWeight()+passenger_weight_;

}

private:

int capacity_;

double passenger_weight_;

};

Overriding in CSStudent Example

#include <iostream>

using namespace std;

class Person

{

public:

 void talk()

 {

 cout << "I'm a person" << endl;

 }

};

class Student : public Person

{

public:

 void talk()

 {

 cout << "I'm a student" << endl;

 }

 void study()

 {

 cout << "study" << endl;

 }

};

class CSStudent : public Student

{

public:

 void talk()

 {

 cout << "I'm a CS student" <<

endl;

 }

 void writeCode()

 {

 cout << "writeCode" << endl;

 }

};

int main()

{

 CSStudent csst;

 csst.talk();

// Output: "I'm a CS student"

 Person& person_csst = csst;

 person_csst.talk();

// Output: "I'm a person" ??

 return 0;

}

Why is Person::talk() called instead of

CSStudent::talk()?

• By default, C++ compiler generates code that matches

a function call with the correct function definition at

compile time based on declared type (called static

binding).

• The actual type of the object referenced / pointed by

the base class reference / pointer is unknown at

compile time.

• Only the declared type (base class reference / pointer

type) is known at compile time.

More Examples

int main()

{

Person p;

Student st;

CSStudent csst;

Person& person_p = p;

Person& person_st = st;

Person& person_csst = csst;

person_p.talk(); // Person::talk()

person_st.talk(); // Person::talk()

person_csst.talk(); // Person::talk()

Student& student_st = st;

Student& student_csst = csst;

student_st.talk(); // Student::talk()

student_csst.talk(); // Student::talk()

return 0;

}

How to get polymorphic behavior?

• But this is not what we want!

• We often want to customize the behavior of the

same member function in each derived class

– so that we get different behaviors through the same

interface → Polymorphism!

Person& person_p = p;

Person& person_st = st;

Person& person_csst = csst;

person_p.talk(); // Person::talk()

person_st.talk(); // Student::talk()

person_csst.talk(); // CSStudent::talk()

Like this:

Virtual Functions

• By declaring the member function virtual, you

can do this!

• Calling a virtual functions means:

• C++ compiler generates code that matches a

function call with the correct function definition at

runtime based on actual type (called dynamic

binding).

virtual void talk();

Virtual Functions

• Virtual functions are keys to implement polymorphism
in C++.

– declare polymorphic member functions to be 'virtual',

– and use the base class pointer / reference to refer an instance
of the derived class,

– then the function call from a base class pointer / reference
will execute the function overridden in the derived class.

• Where to specify ‘virtual’?

– Actually, ‘virtual’ keyword is not necessary for the
overridden virtual member function in the derived class.

– But specifying ‘virtual’ for all virtual functions in descendant
classes is recommended.

Virtual Function Example

// Vehicle classes.

class Vehicle {

public:

virtual void Accelerate() {

cout << "Vehicle.Accelerate";

}

};

class Car : public Vehicle {

public:

virtual void Accelerate() {

cout << "Car.Accelerate";

}

};

class Truck : public Vehicle {

public:

virtual void Accelerate();

cout << "Truck.Accelerate";

}

};

// Main routine.

int main() {

Car car;

Truck truck;

Vehicle* pv = &car;

pv->Accelerate();

// Outputs Car.Accelerate.

pv = &truck;

pv->Accelerate();

// Outputs Truck.Accelerate.

Vehicle vehicle;

pv = &vehicle;

pv->Accelerate();

// Outputs Vehicle.Accelerate.

return 0;

}

Virtual Function Example (w/o virtual)

// Vehicle classes.

class Vehicle {

public:

void Accelerate() {

cout << "Vehicle.Accelerate";

}

};

class Car : public Vehicle {

public:

void Accelerate() {

cout << "Car.Accelerate";

}

};

class Truck : public Vehicle {

public:

void Accelerate();

cout << "Truck.Accelerate";

}

};

// Main routine.

int main() {

Car car;

Truck truck;

Vehicle* pv = &car;

pv->Accelerate();

// Outputs Vehicle.Accelerate.

car.Accelerate();

// Outputs Car.Accelerate.

pv = &truck;

pv->Accelerate();

// Outputs Vehicle.Accelerate.

truck.Accelerate();

// Outputs Truck.Accelerate.

Vehicle vehicle;

pv = &vehicle;

pv->Accelerate();

// Outputs Vehicle.Accelerate.

return 0;

}

Virtual Functions in CSStudent Example

#include <iostream>

using namespace std;

class Person

{

public:

 virtual void talk()

 {

 cout << "I'm a person" << endl;

 }

};

class Student : public Person

{

public:

 virtual void talk()

 {

 cout << "I'm a student" << endl;

 }

 void study()

 {

 cout << "study" << endl;

 }

};

class CSStudent : public Student

{

public:

 virtual void talk()

 {

 cout << "I'm a CS student" <<

endl;

 }

 void writeCode()

 {

 cout << "writeCode" << endl;

 }

};

int main()

{

 CSStudent csst;

 csst.talk();

// Output: "I'm a CS student"

 Person& person_csst = csst;

 person_csst.talk();

// Output: "I'm a CS student"

 return 0;

}

Another Example

void makePersonTalk(Person* person)

{

person->talk();

}

int main()

{

vector<Person*> people;

people.push_back(new Person);

people.push_back(new Person);

people.push_back(new Student);

people.push_back(new Student);

people.push_back(new Person);

people.push_back(new Student);

people.push_back(new CSStudent);

people.push_back(new CSStudent);

for(int i=0; i<people.size(); ++i)

makePersonTalk(people[i]);

for(int i=0; i<people.size(); ++i)

delete people[i];

return 0;

}

Quiz 2

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Destructor and Virtual

• What happens if a derived class object is 'deleted'

by its base class pointer?

class A {

public:

A() { cout << " A” << endl; }

~A() { cout << " ~A” << endl; }

};

class AA : public A {

public:

AA() { cout << " AA” << endl; }

~AA() { cout << " ~AA” << endl; }

};

int main() {

AA* pa = new AA; // OK: prints ' A AA'.

delete pa; // prints ' ~AA ~A'.

return 0;

}

Destructor and Virtual

• What happens if a derived class object is 'deleted'

by its base class pointer?

class A {

public:

A() { cout << " A"; }

~A() { cout << " ~A"; }

};

class AA : public A {

public:

AA() { cout << " AA"; }

~AA() { cout << " ~AA"; }

};

int main() {

A* pa = new AA; // OK: prints ' A AA'.

delete pa; // Hmm..: prints only ' ~A'.

return 0;

}

Virtual Destructor

• What happens if a derived class object is 'deleted' by

its base class pointer?

• If the base class destructor is not virtual,

– only the base class destructor is called

– the derived class destructor is not called

• This may cause memory leak

– Think about this case: A derived class destructor has the code

that delete its member variables which are assigned by

new in its constructor

#include <iostream>

using namespace std;

class Shape

{

public:

Shape() {}

~Shape() {}

};

class Rectangle : public Shape

{

private:

int* width;

int* height;

public:

Rectangle()

{

width = new int;

height = new int;

cout << "Rectangle()" << endl;

}

~Rectangle()

{

delete width;

delete height;

cout << "~Rectangle()" << endl;

}

};

int main()

{

Shape* shape1 = new Rectangle;

delete shape1;

return 0;

}

Virtual Destructor

• What happens if a derived class object is 'deleted'

by its base class pointer?

• If the base class destructor is virtual,

– the derived class destructor is called

– and then base class destructors is called (reverse order of

constructor calls)

#include <iostream>

using namespace std;

class Shape

{

public:

Shape() {}

virtual ~Shape() {}

};

class Rectangle : public Shape

{

private:

int* width;

int* height;

public:

Rectangle()

{

width = new int;

height = new int;

cout << "Rectangle()" << endl;

}

virtual ~Rectangle()

{

delete width;

delete height;

cout << "~Rectangle()" << endl;

}

};

int main()

{

Shape* shape1 = new Rectangle;

delete shape1;

return 0;

}

When do we need a virtual destructor?

• A destructor of a base class should be virtual if

– its descendant class instance can be deleted by the base class
pointer.

– in other words, any of member function is virtual (which means it’s
a polymorphic base class).

class A {

public:

A() { cout << " A"; }

virtual ~A() { cout << " ~A"; }

};

class AA : public A {

public:

AA() { cout << " AA"; }

virtual ~AA() { cout << " ~AA"; }

};

int main() {

A* pa = new AA; // OK: prints ' A AA'.

delete pa; // OK: prints ' ~AA ~A'.

return 0;

}

Virtual Destructor

• Note that constructors cannot be virtual

– "virtual" allows us to call a function knowing only an

interfaces and not the exact type of the object.

– But to create an object, you need to know the exact type

of what you want to create.

– Bjarne Stroustrup's C++ Style and Technique FAQ: Why

don't we have virtual constructors?

http://www.stroustrup.com/bs_faq2.html#virtual-ctor
http://www.stroustrup.com/bs_faq2.html#virtual-ctor

Quiz 3

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

CAUTION: Copying a derived class object

to a base class object
#include <iostream>

using namespace std;

class Animal{

public:

virtual void makeSound() {cout << "(none)" << endl;}

};

class Dog : public Animal{

public:

virtual void makeSound() {cout << "bark" << endl;}

};

int main()

{

Animal animal;

animal.makeSound(); // "(none)"

Dog dog;

dog.makeSound(); // "bark"

// A typical way for polymorphism

Animal& goodDog = dog;

goodDog.makeSound(); // "bark"

// ???

Animal badDog = dog;

badDog.makeSound(); // "(none)"

}

CAUTION: Avoid Object Slicing

• In C++, object slicing occurs when a derived class

object is copied to a base class object.

– Additional attributes of a derived class object are “sliced off”

• Note that C++ polymorphism works only with

references or pointers, not with objects.

class Base { int x, y; };

class Derived : public Base { int z, w; };

int main()

{

Derived d;

Base b = d; // Object Slicing, z and w of d are sliced off

}

Next Time

• Labs for this lecture:

– Lab1: Assignment 9-1

– Lab2: Assignment 9-2

• Next lecture:

– 10 - Polymorphism 2

	슬라이드 1: Creative Software Design 9 – Polymorphism 1
	슬라이드 2: Outline
	슬라이드 3: What is Polymorphism?
	슬라이드 4: Real-world Examples
	슬라이드 5: Types of Polymorphism
	슬라이드 6: An Example of Subtype Polymorphism
	슬라이드 7: Pointers & References with Inheritance
	슬라이드 8: Pointers with Inheritance
	슬라이드 9
	슬라이드 10
	슬라이드 11: Pointers with Inheritance
	슬라이드 12
	슬라이드 13: References with Inheritance
	슬라이드 14
	슬라이드 15: References with Inheritance
	슬라이드 16
	슬라이드 17: Polymorphism in C++
	슬라이드 18: Polymorphism in C++
	슬라이드 19: Quiz 1
	슬라이드 20: Recall: Overriding Member Function
	슬라이드 21: Overriding in CSStudent Example
	슬라이드 22: Why is Person::talk() called instead of CSStudent::talk()?
	슬라이드 23: More Examples
	슬라이드 24: How to get polymorphic behavior?
	슬라이드 25: Virtual Functions
	슬라이드 26: Virtual Functions
	슬라이드 27: Virtual Function Example
	슬라이드 28: Virtual Function Example (w/o virtual)
	슬라이드 29: Virtual Functions in CSStudent Example
	슬라이드 30: Another Example
	슬라이드 31: Quiz 2
	슬라이드 32: Destructor and Virtual
	슬라이드 33: Destructor and Virtual
	슬라이드 34: Virtual Destructor
	슬라이드 35
	슬라이드 36: Virtual Destructor
	슬라이드 37
	슬라이드 38: When do we need a virtual destructor?
	슬라이드 39: Virtual Destructor
	슬라이드 40: Quiz 3
	슬라이드 41: CAUTION: Copying a derived class object to a base class object
	슬라이드 42: CAUTION: Avoid Object Slicing
	슬라이드 43: Next Time

